Abstract

Schiff bases derived from hydroxyl naphthaldehydes and o-substituted anilines have been prepared and their tautomerism assessed by spectroscopic, crystallographic, and computational methods. Tautomeric equilibria have also been studied and reveal in most cases a slight preference of imine tautomers in solution; a fact supported by DFT calculations in the gas phase as well as incorporating solvent effects through the SMD model. To simulate the effect exerted by the crystal lattice on tautomer stability, we have developed a computational protocol in the case of 1-tert-butyl-2-(2-hydroxy-1-naphthylmethylene)aminobenzene whose data have been obtained experimentally at 120 K. Although a rapid imine-enamine interconversion may be occurring in the solid state, the imine tautomer becomes the most stable form and the energy difference should be related to the difference in the packing of the molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.