Abstract

Three 1-(n-pyridinyl)butane-1,3-diones (nPM) (n = 2, 3, and 4) molecules were synthesized and their molecular structure, tautomerism, conformational stability, and intramolecular hydrogen bonding (IHB) of cis-enol forms, was investigated by a combination of computational and experimental methods. Density functional theory (DFT) calculations were used and the Atoms in Molecules (AIM) analysis indicated an intramolecular hydrogen bond strength as 17.9–20.3 kcal/mol using the B3LYP/6–311++G(d,p) level of theory. The calculated structures, NBO, and intramolecular hydrogen bond strengths for the stable cis-enol forms of nPM molecules were compared with each other and with those of acetylacetone (AA) and benzoylacetone (BA). The single crystal X-ray structure of 4PM confirmed that the tautomer with the OH group next to the pyridine ring best describes the structure in the solid-state. The vibrational bands of the title molecules were assigned to the corresponding normal modes, and the equilibrium between the two cis enol tautomers was estimated by means of IR, Raman and UV/Vis spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.