Abstract
A taut ideal triangulation of a 3-manifold is a topological ideal triangulation with extra combinatorial structure: a choice of transverse orientation on each ideal 2-simplex, satisfying two simple conditions. The aim of this paper is to demonstrate that taut ideal triangulations are very common, and that their behaviour is very similar to that of a taut foliation. For example, by studying normal surfaces in taut ideal triangulations, we give a new proof of Gabai's result that the singular genus of a knot in the 3-sphere is equal to its genus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.