Abstract
Chronic kidney disease (CKD) has a worldwide prevalence of higher than 10% with an increasing mortality rate. As it involves the deterioration of renal function, it represents a serious risk to human health and, if left untreated, significantly lowers the quality of the patient's life. CKD is characterized by renal fibrosis. Studies have shown that transforming growth factor β1 (TGF-β1), a key driving factor of renal fibrosis, is closely related to the activation of renal fibrosis pathways such as endoplasmic reticulum stress (ERS). Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid derivative, can effectively inhibit endogenous ERS. Here, we explored the effects and actions of TUDCA on renal fibrosis by establishing a renal mesangial cell (RMC) model. The RMC was stimulated with TGF-β1, and PCR and western blotting were used to detect the expression of ERS-related chaperone proteins and fibrotic indicators. The expression of glucose-regulated protein 78 (GRP78) was silenced in RMC cells to investigate the role of GRP78 in renal fibrosis. Finally, PCR and western blotting were used to detect the effects of TUDCA on the expression of GRP78, C/EBP homologous protein (CHOP), α-smooth muscle actin (α-SMA), and fibronectin (FN) in the TGF-β1-stimulated RMCs. The results showed that TUDCA significantly downregulated TGF-β1-induced levels of GRP78, CHOP, α-SMA and FN in RMCs. In addition, downregulation of GRP78 inhibited the expression of FN and α-SMA in the RMCs. In conclusion, downregulation of GRP78 and CHOP expression is one of the mechanisms by which TUDCA inhibits TGF-β1-induced renal mesangial cell fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.