Abstract

Spinal cord injury (SCI) is generally divided into primary and secondary injuries, and apoptosis is an important event of the secondary injury. As an endogenous bile acid and recognized endoplasmic reticulum (ER) stress inhibitor, tauroursodeoxycholic acid (TUDCA) administration has been reported to have a potentially therapeutic effect on neurodegenerative diseases, but its real mechanism is still unclear. In this study, we evaluated whether TUDCA could alleviate traumatic damage of the spinal cord and improve locomotion function in a mouse model of SCI. Traumatic SCI mice were intraperitoneally injected with TUDCA, and the effects were evaluated based on motor function assessment, histopathology, apoptosis detection, qRT-PCR, and western blot at different time periods. TUDCA administration can improve motor function and reduce secondary injury and lesion area after SCI. Furthermore, the apoptotic ratios were significantly reduced; Grp78, Erdj4, and CHOP were attenuated by the treatment. Unexpectedly, the levels of CIBZ, a novel therapeutic target for SCI, were specifically up-regulated. Taken together, it is suggested that TUDCA effectively suppressed ER stress through targeted up-regulation of CIBZ. This study also provides a new strategy for relieving secondary damage by inhibiting apoptosis in the early treatment of spinal cord injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.