Abstract

Mouse cerebellar granule neurons and astrocytes grown in the presence of 2 mM guanidinoethane sulfonate (GES) exhibited a progressive and rapid decrease in taurine concentration. A reduction of 20% was observed as early as 1 hr after exposure to GES and the loss of cell taurine continued until the taurine pool was reduced by about 90%. This remaining taurine persisted without further decrease even after 3 weeks of exposure to GES. Taurine reduction caused by GES was similar in both types of cells. The effect of GES was dose-dependent, with significant decreases in taurine levels already detected at 100 microM. It was selective for taurine, since none of the other free amino acids were affected. Taurine depletion induced by GES was totally reversible. Intracellular taurine was not mobilized by GES. Taurine uptake in both astrocytes and granule neurons, examined at the taurine concentration present in the culture medium, was practically abolished by 2 mM GES. This approach represents an in vitro model of taurine depletion that may be useful to investigate the cell abnormalities responsible for the failure of differentiation and migration of granule cells and astrocytes observed in taurine-deficient cats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.