Abstract

BackgroundPancreatic β-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic β-cells. Taurine, a β-sulfonic acid, may be transported into cells to balance osmotic pressure. The taurine transporter (TauT) has been described in pancreatic tissue, but the function of taurine in insulin release has not been established. Uptake of taurine by pancreatic β-cells may alter membrane potential and have an effect on ion currents. If taurine uptake does alter β-cell current, it might have an effect on exocytosis of cytoplasmic vesicle. We wished to test the effect of taurine on regulating release of insulin from the pancreatic β-cell.MethodsPancreatic β-cell lines Hit-TI5 (Syrian hamster) and Rin-m (rat insulinoma) were used in these studies. Cells were grown to an 80% confluence on uncoated cover glass in RPMI media containing 10% fetal horse serum. The cells were then adapted to a serum-free, glucose free environment for 24 hours. At that time, the cells were treated with either 1 mM glucose, 1 mM taurine, 1 mM glucose + 1 mM taurine, 3 mM glucose, or 3 mM glucose + 1 mM taurine. The cells were examined by confocal microscopy for cytoplasmic levels of insulin.ResultsIn both cell lines, 1 mM glucose had no effect on insulin levels and served as a control. Cells starved of glucose had a significant reduction (p<0.001) in the level of insulin, but this level was significantly higher than all other treatments. As expected, the 3 mM glucose treatment resulted in a statistically lower (p<0.001) insulin level than control cells. Interestingly, 1 mM taurine also resulted in a statistically lower level of insulin (p<0.001) compared to controls when either no glucose or 1 mM glucose was present. Cells treated with 1 mM taurine plus 3 mM glucose showed a level of insulin similar to that of 3 mM glucose alone.ConclusionsTaurine administration can alter the electrogenic response in β-cell lines, leading to a change in calcium homeostasis and a subsequent decrease in intracellular insulin levels. The consequence of these actions could represent a method of increasing plasma insulin levels leading to a decrease in plasma glucose levels.

Highlights

  • Pancreatic b-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations

  • Each observed value was statistically different than all others with the exception of the cells treated with 3 mM glucose and 3 mM glucose plus taurine

  • This suggests that the 3 mM glucose is the overriding stimulus for insulin release

Read more

Summary

Introduction

Pancreatic b-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic b-cells. The endocrine pancreas is regulated by neurotransmitters, including the use of glutamate and GABA to regulate insulin and glucagon release as well as somatostatin to regulate both a- and b-cell activities. SSTR2 activation maintains the GABA-initiated inhibition of glucagon from a-cells, while the SSTR1/5 receptors are responsible for inhibiting insulin release [5]. When we examined the relative immunoreactivity of insulin, glucagon, and somatostatin in the pancreas of these mice, we found a significant increase in the levels of all three islet markers

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call