Abstract

Mitochondrial injury has recently been implicated in the pathogenesis of glucocorticoid-induced osteonecrosis. Using cultured osteocytes and a rabbit model, we investigated the possibility that taurine (TAU), which is known to play a role in the preservation of mitochondrial function, might also prevent the development of osteonecrosis. To reduplicate the intraosseous environment seen in glucocorticoid-induced osteonecrosis, dexamethasone (Dex) was added to MLO-Y4 cultured in 1% hypoxia (H-D stress environment). An in vitro study was conducted in which changes in mitochondrial transcription factor A (TFAM), a marker of mitochondrial function, and ATP5A produced by mitochondria, induced by the presence/absence of taurine addition were measured. To confirm the effect of taurine in vivo, 15 Japanese White rabbits were administered methylprednisolone (MP) 20 mg/kg as a single injection into the gluteus muscle (MP+/TAU− group), while for 5 consecutive days from the day of MP administration, taurine 100 mg/kg was administered to 15 animals (MP+/TAU+ group). As a control 15 untreated rabbits were also studied. The rabbits in each of the groups were sacrificed on the 14th day after glucocorticoid administration, and the bilateral femora were harvested. Histopathologically, the incidence of osteonecrosis was quantified immunohistochemically by quantifying TFAM and ATP5A expression. In the rabbits exposed to an H-D stress environment and in MP+/TAU− group, TFAM and ATP5A expression markedly decreased. With addition of taurine in the in vitro and in vivo studies, the expression of TFAM and ATP5A was somewhat decreased as compared with Dex−/hypoxia− or MP−/TAU− group, while improvement was noted as compared with Dex+/hypoxia+ or MP+/TAU− group. In rabbits, the incidence of osteonecrosis was 80% in MP+/TAU− group, in contrast to 20% in the taurine administered group (MP+/TAU+), representing a significant decrease. Since taurine was documented to exert a protective effect on mitochondrial function by inhibiting the mitochondrial dysfunction associated with glucocorticoid administration, we speculated that it might also indirectly help to prevent the development of osteonecrosis in this context. Since taurine is already being used clinically, we considered that its clinical application would also likely be smooth.

Highlights

  • Glucocorticoids are excellent therapeutic agents that are used effectively in diverse conditions, notably autoimmune disorders and asthma

  • To document any in vivo inhibitory effect of taurine on the development of glucocorticoid-induced osteonecrosis, we investigated the incidence of osteonecrosis and intraosseous mitochondrial function using a glucocorticoid-induced rabbit osteonecrosis model

  • Numerous studies have identified a role for oxidative stress in glucocorticoid-induced osteonecrosis [2,14,15]

Read more

Summary

Introduction

Glucocorticoids are excellent therapeutic agents that are used effectively in diverse conditions, notably autoimmune disorders and asthma. The price for this, includes many well-known serious side effects including glucocorticoid-induced femoral head osteonecrosis. Glucocorticoid-induced femoral head osteonecrosis occurs at both young and elder ages, and is considered an intractable condition in which destruction of the hip joint markedly impairs quality of life (QOL) by causing pain and impaired ambulation. Once femoral head osteonecrosis is established, surgical intervention such as artificial joint implantation cannot be avoided in most cases. This situation makes the devising of optimal prophylactic countermeasures and greater elucidation of the underlying pathogenetic mechanisms of glucocorticoid-related injury very important so as to make glucocorticoid use safer. Despite the extensive research being focused on glucocorticoid-induced femoral head osteonecrosis, its causes and pathophysiology are still far from clear. Attention has been turned to mitochondria because they are the site of oxidative stress development, and the involvement of mitochondrial injury in glucocorticoid-induced osteonecrosis is being recognized [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.