Abstract
Perfusion with high millimolar levels of taurine evoked a long-lasting potentiation (LLP-TAU) of synaptic transmission in the Schaffer-collateral CA1 region of the rat hippocampus. Although LLP-TAU showed some correlations to increases in the total taurine content of hippocampal slices, it could not be blocked by the taurine transport inhibitor guanidinoethanesulfonic acid (GES), which was able to significantly reduce total slice taurine uptake. Inhibition of GABA transport by either nipecotic acid or beta-guanidinopropionate failed to abolish LLP-TAU and had no significant effect on taurine uptake. The combination of GES and nipecotic acid also had no significant effect on LLP-TAU. Experiments with transportable structural analogs of taurine (beta-aminoisobutyric acid, homotaurine, and isethionic acid) suggest that activation of classical taurine transport pathways does not always yield a robust LLP-TAU. Hippocampal LLP-TAU could be significantly attenuated, however, by pre-incubation with submillimolar levels of taurine. In summary, the development of LLP-TAU in the rat hippocampus appears to be associated with the intracellular accumulation rather than the activation of known transporters of taurine, but the precise means of its accumulation remains to be identified.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.