Abstract

The effect of taurine on angiotensin II-induced changes in cell morphology and biochemistry of the cultured neonatal cardiomyocyte was examined. Angiotensin II (1–100 nM) alone caused a slow increase in the surface area of the myocyte accompanied by an induction of the expression of atrial natriuretic peptide (ANP) and an upregulation of transforming growth factor β 1 gene (TGF-β 1). The signaling pathway of angiotensin II (1–100 nM) was found to proceed through protein kinase C and the rapid activation of mitogen-activated protein (MAP) kinases. Pretreatment of the myocyte with taurine (20 mM) in the absence of angiotensin II had no visible effect on cell size or growth rate. However, the cells that were pretreated with taurine (20 mM) for 24 h exhibited reduced responsiveness to angiotensin II (100 nM) relative to surface cell area enlargement and the upregulation of the late and growth factor genes(ANP, TGF-β 1). Angiotensin II-mediated activation of the MAP kinases (extracellular signal-regulated protein kinase 1/2: ERK1/2) was not blocked by taurine. Taurine reduced the phosphorylation of a 29-kDa protein, a reaction which was enhanced by angiotensin II and appears to involve protein kinase C step. The results indicate that taurine is an effective inhibitor of certain aspects of angiotensin II action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.