Abstract

The effects of ions on taurine and beta-alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and beta-alanine molecule across cell membranes. A reduction in Cl- concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and beta-alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and beta-alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or beta-alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.