Abstract

Iron overload can induce reactive oxygen species (ROS) burst and liver damage. Taurine can reduce ROS production and ameliorate liver injury caused by iron overload; however, the underlying molecular mechanism remains elusive. Herein, L02 cells treated with 120 μM iron dextran for 48 h showed marked oxidative stress damage and significantly increased apoptosis. Taurine protected hepatocytes by stabilizing mitochondrial membranes and resisting oxidative stress damage caused by iron overload. However, transfection with siRNA Bcl-2 virus abrogated the observed protective effects. Following treatment with taurine, B cell lymphoma-2 (Bcl-2) could inhibit the opening of the mitochondrial permeability transition pore (mPTP), subsequently stabilizing the mitochondrial membrane potential by interacting with voltage-dependent anion channel 1 (VDAC1) of mPTP. The present study is the first to clarify the mechanism underlying taurine-afforded hepatocyte protection against iron overload-induced oxidative stress via Bcl-2-mediated inhibition of mPTP opening and the antiapoptotic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call