Abstract

This study investigated the molecular mechanisms by which taurine exerts its reno-protective effects in thioacetamide (TAA) - induced kidney injury in rats. Rats received taurine (100 mg/kg daily, intraperitoneally) either from day 1 of TAA injection (250 mg/kg twice weekly for 6 weeks) or after 6 weeks of TAA administration. Taurine treatment, either concomitant or later as a therapy, restored kidney functions, reduced blood urea nitrogen (BUN), creatinine, and malondialdehyde (MDA), increased renal levels of superoxide dismutase (SOD), and reversed the increase of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) caused by TAA. Taurine treatment also led to a significant rise in nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NADPH quinone oxidoreductase-1 (NQO-1) levels, with significant suppression of extracellular signal-regulated kinase (ERK) 1/2, nuclear factor kappa B (NF-κB), and tumor necrosis factor α (TNF-α) gene expressions, and interleukin-18 (IL-18) and TNF-α protein levels compared with those in TAA kidney-injured rats. Taurine exhibited reno-protective potential in TAA-induced kidney injury through its antioxidant and anti-inflammatory effects. Taurine antioxidant activity is accredited for its effect on Nrf-2 induction and subsequent activation of HO-1 and NQO-1. In addition, taurine exerts its anti-inflammatory effect via regulating NF-κB transcription and subsequent production of pro-inflammatory mediators via mitogen-activated protein kinase (MAPK) signaling regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call