Abstract

We make a complete wavelet analysis of asymptotic properties of distributions. The study is carried out via Abelian and Tauberian type results, connecting the boundary asymptotic behavior of the wavelet transform with local and non-local quasiasymptotic properties of elements in the Schwartz class of tempered distributions. Our Tauberian theorems are full characterizations of such asymptotic properties. We also provide precise wavelet characterizations of the asymptotic behavior of elements in the dual of the space of highly time-frequency localized functions over the real line. For the use of the wavelet transform in local analysis, we study the problem of extensions of distributions initially defined on ℝ∖{0} to ℝ; in this extension problem, we explore the asymptotic properties of extensions of a distribution having a prescribed asymptotic behavior. Our results imply intrinsic properties of functions and measures as well, for example, we give a new proof of the classical Littlewood Tauberian theorem for power series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.