Abstract
We define statistical logarithmic summability of strongly measurable fuzzy valued functions and we give slowly decreasing type Tauberian conditions under which statistical limit at infinity and statistical logarithmic summability of strongly measurable fuzzy valued functions imply ordinary limit at infinity in one dimensional fuzzy number space $E^1$. Besides, we give slowly oscillating type Tauberian conditions for statistical limit and statistical logarithmic summability of strongly measurable fuzzy valued functions in $n-$dimensional fuzzy number space $E^n$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.