Abstract

Tau is one of the most abundant microtubule-associated proteins involved in kinetic stabilization and bundling of axonal microtubules. Although intense research has revealed much about tau function and its involvement in Alzheimer’s disease during the past years, it still remains unclear how exactly tau binds on microtubules and if the kinetic stabilization of microtubules by tau is accompanied, at least in part, by a mechanical reinforcement of microtubules. In this paper, we have used atomic force microscopy to address both aspects by visualizing and mechanically analyzing microtubules in the presence of native tau isoforms. We could show that tau at saturating concentrations forms a 1 nm thick layer around the microtubule, but leaves the protofilament structure well visible. The latter observation argues for tau binding mainly along and not across the protofilaments. The radial elasticity of microtubules was almost unaffected by tau, consistent with tau binding along the tops of the protofilaments. Tau did increase the resistance of microtubules against rupture. Finite-element calculations confirmed our findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.