Abstract

Tauopathies are a specific type of slow and progressive neurodegeneration, which involves intracellular deposition of fibrillar material composed of abnormal hyperphosphorylation of the microtubule associated protein (MAP) tau. Despite many years of intensive research, our understanding of the molecular events that lead to neurodegeneration is far from complete. No effective therapeutic treatments have been defined, and questions surround the validity and utility of existing animal models. It is an urgent need to develop a novel animal model to study the underlying neurodegenerative mechanisms of tauopathies. Zebrafish models of tauopathies could complement existing models by providing an in vivo platform for genetic and chemical screens in order to identify new therapeutic targets and compounds, meanwhile zebrafish models have permitted discovery of unique characteristics of these genes that could have been difficultly observed in other models. Novel transgenic zebrafish models expressing wild-type or mutant forms of human 4R-tau in neurons have recently been reported. These studies show disease-relevant changes including tau hyperphosphorylation, aggregation and somato-dendritic relocalization. This review highlights the availability of transgenic tau zebrafish models that allow more detailed biochemical studies of tau in the zebrafish CNS to characterize solubility, fibril morphology and further clarify phosphorylation proceedings. Furthermore, a deeper knowledge of the zebrafish brain and a better characterization of tau caused by alterations in neurodegenerative disorders are needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.