Abstract

Accumulation of fibrillar tau protein aggregates is a neuropathological hallmark of Alzheimer's disease (AD) and related neurodegenerative dementias, including a subgroup of frontotemporal lobar degeneration (FTLD). Visualization of tau lesions in the brains of living subjects enables a pathology-based diagnosis of dementing illnesses in the prodromal stage, and offers objective measures of disease progression and outcomes of disease-modifying therapies. With this rationale, diverse classes of low-molecular-weight chemicals capable of binding to a β-pleated sheet structure have been developed to be used for in vivo positron emission tomography (PET) of tau pathologies. Clinical PET studies of AD patients with such tau probes have provided the following insights: (1) Tau fibrils accumulate in the hippocampal formation in an age-dependent manner that is independent of amyloid-beta peptide (Aβ) pathology; (2) The deposition of Aβ may trigger a spatial expansion of tau pathology, in transition from normal aging to advanced AD; and (3) Tau accumulation is intimately associated with local neuronal loss, leading to cortical atrophy and focal symptoms. In contrast, studies of FTLD have shown a limited performance of first-generation PET probes in capturing non-AD-type tau lesions. New compounds have accordingly been developed and clinically tested, proving to yield a high contrast for tau deposits with high specificity. These second-generation probes are being evaluated primarily by pharmaceutical companies, in line with their growing demands for neuroimaging-based biomarkers serving for clinical trials of anti-Aβ and anti-tau therapies. Meanwhile, a consortium flexibly linking academia and industry to facilitate the utilization of research tools, including tau PET probes, has been established in Japan, for the ultimate purpose of elucidating the molecular etiology of tauopathies and creating diagnostic and therapeutic agents based on such an understanding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.