Abstract
Cerebral ischemia is known to be a major cause of death and the later development of Alzheimer's disease and vascular dementia. However, ischemia induced cellular damage that initiates these diseases remain poorly understood. This is primarily due to lack of clinically relevant models that are highly reproducible. Here, we have optimised a murine model of global cerebral ischaemia with multiple markers to determine brain pathology, neurochemistry and correlated memory deficits in these animals. Cerebral ischaemia in mice was induced by bilateral common carotid artery occlusion. Following reperfusion, the mice were either fixed with 4% paraformaldehyde or decapitated under anaesthesia. Brains were processed for Western blotting or immunohistochemistry for glial (GLT1) and vesicular (VGLUT1, VGLUT2) glutamate transporters and paired helical filament (PHF1) tau. The PHF1 tau is the main component of neurofibrillary tangle, which is the pathological hallmark of Alzheimer's disease and vascular dementia. The novel object recognition behavioural assay was used to investigate the functional cognitive consequences in these mice. The results show consistent and selective neuronal and glial cell changes in the hippocampus and the cortex together with significant reductions in GLT1 (***P < 0.001), VGLUT1 (**P < 0.01) and VGLUT2 (***P < 0.001) expressions in the hippocampus in occluded mice as compared to sham-operated animals. These changes are associated with increased PHF1 (***P < 0.0001) protein and a significant impairment of performance (*p < 0.0006, N = 6/group) in the novel object recognition test. This model represents a useful tool for investigating cellular, biochemical and molecular mechanisms of global cerebral ischaemia and may be an ideal preclinical model for vascular dementia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.