Abstract

Charged tau leptons emerging in a long baseline experiment with a muon storage ring and a far-away detector will positively establish neutrino oscillations. We study the conversion of ν μ ( ν μ ) and of ν e ( ν e ) to ν τ or ν τ for neutrinos from a 20 GeV muon storage ring, within the strong mixing scheme and on the basis of the squared mass differences which are compatible with all reported neutrino anomalies, including the LSND data. In contrast to other solutions which ignore the Los Alamos anomaly, we find charged tau production rates which should be measurable in a realistic set up. As a consequence, determining the complete mass spectrum of neutrinos as well as all three mixing angles seems within reach. Matter effects are discussed thoroughly but are found to be small in this situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.