Abstract

The termination signal that limits transcription through the early region of bacteriophage T3 (T3Te) has been cloned and sequenced. The nucleotide sequence of T3Te is identical with that of T7Te, with the exception of a single G to U substitution in the 3′ tail of the terminated transcript, and addition of an AC to the loop in the terminator stem-loop, enlarging the loop to six residues. Previous studies of the properties of T3Te have shown that this site is rho independent and is highly efficient for termination in vivo, but is used poorly in vitro during transcription with purified Escherichia coli RNA polymerase. In contrast, the equivalent site in bacteriophage T7 (T7Te) is an efficient termination signal both in vivo and in vitro. However, T3Te becomes an efficient termination site in vitro in the presence of preparations of tau factor. This factor also alters the sites of RNA chain termination found in vitro at T3Te. Transcripts formed in the presence of tau are several nucleotides shorter than those produced with RNA polymerase alone, and have 3′ termini that are almost identical with transcripts found in vivo. These latter results are similar to our earlier findings with T7Te, and suggest that other rho independent terminators may act with transcription termination factors in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call