Abstract

Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.