Abstract

This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call