Abstract

Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.

Highlights

  • Plenty of studies have demonstrated that pathogenesis-related (PR) proteins play key roles in plant disease-resistance responses and systemic-acquired resistance (SAR) [1]

  • PR proteins encoded by plant defense genes play key roles in plant defense responses, in systemic-acquired resistance

  • S1 Table summarizes all 7 candidates uniquely found in the TaTLP1-pEarlyGate103 expressing samples according to their biological function which have at least 15 different peptides detected in mass spectrometry (MS) (S1 Table)

Read more

Summary

Introduction

Plenty of studies have demonstrated that pathogenesis-related (PR) proteins play key roles in plant disease-resistance responses and systemic-acquired resistance (SAR) [1]. PRs were found to play a pioneering role in the discovery of plant innate immunity as different gene families were discovered to be responsible for the accumulation of PRs upon pathogen challenge. PRs and similar proteins have been reported to be induced by various types of pathogens in many plants. Among different groups of PRs, PR1, PR2, and PR5 are the most common and accumulate locally and systemically suggesting an involvement in SAR that represents a form of plant immunization [2]. PRs generally encode small antimicrobial proteins and their expression levels increase quickly when stimulated by biotic or abiotic stress, and serve as a marker of plant immune signalling. The biochemical activity and mode of action of PR proteins has remained elusive

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call