Abstract
We present an explicit Eta pairing approach for computing the Tate pairing on general divisors of hyperelliptic curves Hd of genus 2, where Hd : y 2 + y = x5 + x3 + d is defined over F2n with d = 0 or 1. We use the resultant for computing the Eta pairing on general divisors. Our method is very general in the sense that it can be used for general divisors, not only for degenerate divisors. In the pairing-based cryptography, the efficient pairing implementation on general divisors is significantly important because the decryption process definitely requires computing a pairing of general divisors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.