Abstract

In this paper we prove Tate conjecture for abelian surfaces of the type $\operatorname{Res}_{K/F}E$ where $E$ is an elliptic curve defined over a totally real or CM number field $K$, and $F$ is a subfield of $K$ such that $[K:F]=2$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.