Abstract

In this work, a novel protonable copolymer was designed to deliver siRNA through the inhalation route, as an innovative formulation for the management of asthma. This polycation was synthesized by derivatization of α,β-poly(N-2-hydroxyethyl)D,L-aspartamide (PHEA) first with 1,2-Bis(3-aminopropylamino)ethane (bAPAE) and then with a proper amount of maleimide terminated poly(ethylene glycol) (PEG-MLB), with the aim to increase the superficial hydrophilicity of the system, allowing the diffusion trough the mucus layer. Once the complexation ability of the copolymer has been evaluated, obtaining nanosized polyplexes, polyplexes were functionalized on the surface with a thiolated TAT peptide, a cell-penetrating peptide (CPP), exploiting a thiol-ene reaction. TAT decorated polyplexes result to be highly cytocompatible and able to retain the siRNA with a suitable complexation weight ratio during the diffusion process through the mucus. Despite polyplexes establish weak bonds with the mucin chains, these can diffuse efficiently through the mucin layer and therefore potentially able to reach the bronchial epithelium. Furthermore, through cellular uptake studies, it was possible to observe how the obtained polyplexes penetrate effectively in the cytoplasm of bronchial epithelial cells, where they can reduce IL-8 gene expression, after LPS exposure. In the end, in order to obtain a formulation administrable as an inhalable dry powder, polyplexes were encapsulated in mannitol-based microparticles, by spray freeze drying, obtaining highly porous particles with proper technological characteristics that make them potentially administrable by inhalation route.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.