Abstract

Frostbite is a chemia resulting from cold-induced skin damage. The process of frostbite is often accompanied by inflammation, and the therapeutic strategies focusing on anti-inflammation are the main direction to data. Tat-CIRP is a 15 amino acid peptide containing HIV protein and cold-inducible RNA-binding protein (CIRP), which is believed to compete with endogenous CIRP for myeloid differentiation 2 (MD2) binding. This study aims to investigate the efficacy of Tat-CIRP in the treatment of frostbite. A mouse model of frostbite was established, and on the first day after frostbite occurrence, Tat-CIRP peptide was administered intravenously via the tail with a dosage interval of one day for a total of three doses. Frozen mouse skin sections were subjected to histological analysis, including hematoxylin-eosin (HE) staining, Masson staining, and immunohistochemical examination. Western blotting was performed to detect the expression level of Ki-67 in mouse skin tissue. One day after frostbite, mice exhibited skin swelling and a solid appearance. From day 1 to 5 after frostbite, MD2 expression was significantly upregulated, while CIRP expression was downregulated. Compared to the frostbite group, mice treated with Tat-CIRP showed accelerated frostbite recovery, reduced levels of inflammatory factors and MD2. Furthermore, the expression of cell proliferation-associated protein Ki-67 and angiogenesis-related protein CD31 was upregulated. Tat-CIRP promotes frozen wound healing via inhibiting inflammation and promoting angiogenesis in frostbitten mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call