Abstract

Background Although glucose is indispensable for the stimulation of insulin release, numerous other insulin secretagogues have been identified. For instance, the dietary monosaccharide fructose potentiates insulin secretion in vitro, but the mechanism and physiological significance remains unclear. The T1R2-T1R3 heterodimer of G protein-coupled receptors mediates sweet sensing in the tongue and ablation of either subunit obliterates sweet taste. We hypothesized that the effects of fructose on insulin release may be mediated by sweet taste receptors (TRs) on beta-cells.

Highlights

  • Glucose is indispensable for the stimulation of insulin release, numerous other insulin secretagogues have been identified

  • Fructose (10.0mM) rapidly activated Phospholipase C (PLC) and increased intracellular calcium (Ca2+i) and insulin release at 8.3mM glucose in wild type (WT) islets and MIN6 cells, but these effects were absent in T1R2 knockout (T1R2-/-) islets

  • Glucose-stimulated insulin release (GSIS) in WT mice was potentiated by low physiological concentrations of fructose (3.0mM in vitro; 0.3g/kg in vivo), but these effects were absent in T1R2-/- mice

Read more

Summary

Introduction

Glucose is indispensable for the stimulation of insulin release, numerous other insulin secretagogues have been identified. The dietary monosaccharide fructose potentiates insulin secretion in vitro, but the mechanism and physiological significance remains unclear. The T1R2-T1R3 heterodimer of G protein-coupled receptors mediates sweet sensing in the tongue and ablation of either subunit obliterates sweet taste. We hypothesized that the effects of fructose on insulin release may be mediated by sweet taste receptors (TRs) on beta-cells

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.