Abstract
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor's predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.