Abstract
We performed metabolic profiling on yellowtail (Seriola quinqueradiata) muscle to develop an objective taste evaluation method for fish meat. Dark (DM) and ordinary (OM) muscle samples before and after storage were subjected to gas chromatography-mass spectrometry (GC-MS) analysis and taste measurements using an electronic tongue. The metabolites identified by the GC-MS analysis were treated as x variables, and the taste values obtained by the electronic tongue were treated as y variables. The relationships between the metabolites and taste attributes were evaluated by two-way orthogonal projections to latent structures (O2PLS) analysis. The O2PLS analyses were normalized in two ways, unit variance (UV) and pareto (Par) scaling. The O2PLS (UV) analysis produced 3+1+0 models in Autofit and this model was statistically significant with R2Y (0.73) and Q2 (0.52) metrics. In particular, significant correlations were found between DM or OM and metabolite intensity and taste attributes, and strong associations were found between “sourness” and lysine, “irritant” and alanine and phenylalanine, “saltiness” and pantothenic acid, and “umami” and creatinine and histidine. The O2PLS (Par) analysis of DM generated significant predictive models for “acidic bitterness,” “irritant,” “saltiness,” “bitterness,” “astringency,” and “richness.” Among these, only “irritant” was affected by storage. This method was thus effective in evaluating the taste of yellowtail muscle.
Highlights
Fish meat is generally recognized as a healthy food that is rich in high-quality proteins and n-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid, and the demand for marine products is increasing worldwide
Significant correlations were found between dark muscle (DM) or ordinary muscle (OM) and the intensity of metabolites and taste attributes, whereas OM storage had no effect on taste and there were no significant relationships with metabolites
In DM, storage affected the taste attribute “irritant,” which was related to a metabolic component
Summary
Fish meat is generally recognized as a healthy food that is rich in high-quality proteins and n-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid, and the demand for marine products is increasing worldwide. This food type is significantly more susceptible to rotting and degeneration than mammalian meat, and aging, which is generally performed for livestock meat, is not performed for fish meat. It is important to objectively evaluate the taste of such empirically assessed food using chemical methods. While it is necessary to analyze the relationship between taste components and sensory evaluation by humans to objectively assess such taste attributes [1], sensory evaluation is labor-intensive and requires training, and it is difficult to obtain reproducible data
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.