Abstract

Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.