Abstract

The use of electroencephalography (EEG) for biometric recognition purposes has recently received an increased level of attention thanks to some of its appealing properties. Among them, it is worth mentioning the universality, the intrinsic liveness detection capability, the possibility to perform a continuous identification, and the robustness against spoofing attacks. In this paper we exhaustively analyze the recognition performance achievable when using a parsimonious representation, in the frequency domain, of EEG signals acquired in both eyes-closed (EC) and eyes-open (EO) resting conditions. Specifically, we evaluate the effectiveness of EEG templates obtained as projections onto subspaces defined through eigenbrains (EBs) or eigentensorbrains (ETBs), two bases for EEG signals here defined by means of principal component analysis (PCA) and multilinear PCA (MPCA). An extensive set of experimental tests, conducted on a database comprising EEG recordings acquired from 30 subjects during two separate sessions, in different days, is performed to compare the recognition capabilities of the considered representations under different system configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.