Abstract

Objective. Photon-counting detector (PCD) CT enables routine virtual-monoenergetic image (VMI) reconstruction. We evaluated the performance of an automatic VMI energy level (keV) selection tool on a clinical PCD-CT system in comparison to an automatic tube potential (kV) selection tool from an energy-integrating-detector (EID) CT system from the same manufacturer. Approach. Four torso-shaped phantoms (20–50 cm width) containing iodine (2, 5, and 10 mg cc−1) and calcium (100 mg cc−1) were scanned on PCD-CT and EID-CT. Dose optimization techniques, task-based VMI energy level and tube-potential selection on PCD-CT (CARE keV) and task-based tube potential selection on EID-CT (CARE kV), were enabled. CT numbers, image noise, and dose-normalized contrast-to-noise ratio (CNRd) were compared. Main results. PCD-CT produced task-specific VMIs at 70, 65, 60, and 55 keV for non-contrast, bone, soft tissue with contrast, and vascular settings, respectively. A 120 kV tube potential was automatically selected on PCD-CT for all scans. In comparison, EID-CT used x-ray tube potentials from 80 to 150 kV based on imaging task and phantom size. PCD-CT achieved consistent dose reduction at 9%, 21% and 39% for bone, soft tissue with contrast, and vascular tasks relative to the non-contrast task, independent of phantom size. On EID-CT, dose reduction factor for contrast tasks relative to the non-contrast task ranged from a 65% decrease (vascular task, 70 kV, 20 cm phantom) to a 21% increase (soft tissue with contrast task, 150 kV, 50 cm phantom) due to size-specific tube potential adaptation. PCD-CT CNRd was equivalent to or higher than those of EID-CT for all tasks and phantom sizes, except for the vascular task with 20 cm phantom, where 70 kV EID-CT CNRd outperformed 55 keV PCD-CT images. Significance. PCD-CT produced more consistent CT numbers compared to EID-CT due to standardized VMI output, which greatly benefits standardization efforts and facilitates radiation dose reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.