Abstract

Discovered during the 1990s and in the beginning regarded as passive membrane pores, the family of two-pore domain potassium (K2P)-channels initially received only little attention. Today the view on this channel family comprising 15 ubiquitously expressed members in mammals has greatly changed. K2P-channels carry potassium outward current that counterbalances membrane depolarization and stabilizes the resting membrane potential. Thereby they are important regulators for the excitability and the firing behaviour especially in neurons. The long list of modulating mechanisms underlines the channels’ relevance. K2P-channels in the thalamus contribute to the regulation of the sleep-wake cycle. They also mediate the effect of volatile anaesthetics by supporting the thalamic activity mode that is also typical for sleep. This review summarizes our knowledge about K2P-channel physiology in the brain, provides an idea of the role of these channels in neurological diseases and lists open questions as well as technical challenges in K2P-channel research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.