Abstract

With the progress of mobile devices and wireless broadband, a new eMarket platform, termed spatial crowdsourcing is emerging, which enables workers (aka crowd) to perform a set of spatial tasks (i.e., tasks related to a geographical location and time) posted by a requester. In this paper, we study a version of the spatial crowdsourcing problem in which the workers autonomously select their tasks, called the worker selected tasks (WST) mode. Towards this end, given a worker, and a set of tasks each of which is associated with a location and an expiration time, we aim to find a schedule for the worker that maximizes the number of performed tasks. We first prove that this problem is NP-hard. Subsequently, for small number of tasks, we propose two exact algorithms based on dynamic programming and branch-and-bound strategies. Since the exact algorithms cannot scale for large number of tasks and/or limited amount of resources on mobile platforms, we propose different approximation algorithms. Finally, to strike a compromise between efficiency and accuracy, we present a progressive algorithms. We conducted a thorough experimental evaluation with both real-world and synthetic data on desktop and mobile platforms to compare the performance and accuracy of our proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.