Abstract
SummaryCloud computing has been progressively popular in the arenas of research and business in the recent years. Virtualization is a resource management approach used in today's cloud computing environment. Virtual Machine (VM) migration algorithms allow for more dynamic resource allocation, as well as improvement in computing power and communication capability in cloud data centers. This necessitates an intelligent optimization approach to VM allocation design for an improved performance of application. In this article, a multi‐objective optimal design approach is proposed to tackle the tasks of VM allocation. Multi‐Objective Optimization (MOO) is a strategy adopted by several methods to handle tasks and workflow scheduling issues that deal with numerous opposing goals. In the cloud computing context, effective task scheduling is critical for achieving cost effective implementation as well as resource utilization. To address the optimal solution, this article proposes an entropy‐based multi objective mayfly algorithm is assessed using a convergence pattern in MOO. The model is tested by implementing in a cloud simulator and results prove that the recommended model has an improved performance with regard to factors such as time and utilization rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.