Abstract
Task scheduling is a key concern in developing grid computation application. Desirable goals for grid task scheduling algorithms would shorten average delay and maximize system utilization and fulfil user constraints. In this work, an agent-based grid management infrastructure is coupled with Hopfield neural network scheduling algorithm. An agent in a grid utilizes a neural network algorithm to manage and schedule tasks. Hopfield neural network is good at finding optimal solution with multi-constraints and can be fast convergent to the result. The simulation results show that the scheduling algorithm works effectively. Efficient and valid solutions for grid task scheduling can be obtained using the scheme. Hopfield neural network is good at finding optimal solution with multi-constraints and can be fast convergent to the result. However, it is often trapped to a local minimum. Mean field annealing algorithm has an advantage in finding the optimal solution escaping from the local minimum
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.