Abstract

Internet of Things (IoT) is made up with growing number of facilities, which are digitalized to have sensing, networking and computing capabilities. Traditionally, the large volume of data generated by the IoT devices are processed in a centralized cloud computing model. However, it is no longer able to meet the computational demands of large-scale and geographically distributed IoT devices for executing tasks of high performance, low latency, and low energy consumption. Therefore, edge computing has emerged as a complement of cloud computing. To improve system performance, it is necessary to partition and offload some tasks generated by local devices to the remote cloud or edge nodes. However, most of the current research work focuses on designing efficient offloading strategies and service orchestration. Little attention has been paid to the problem of jointly optimizing task partitioning and offloading for different application types. In this paper, we make a comprehensive overview on the existing task partitioning and offloading frameworks, focusing on the input and core of decision engine of the framework for task partitioning and offloading. We also propose comprehensive taxonomy metrics for comparing task partitioning and offloading approaches in the IoT cloud-edge collaborative computing framework. Finally, we discuss the problems and challenges that may be encountered in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.