Abstract

In this paper, we consider a heterogeneous mobile cloud computing (HMCC) system that consists of remote cloud servers, local cloudlets, task offloading mobile devices (TMDs), non-task offloading MDs (NTMDs), and radio access networks such as cellular networks and WLANs. TMDs have the capability of task offloading to remote cloud servers or cloudlets, whereas NTMDs are conventional cellular users that do not have such capability. By using stochastic geometry, we analyze the outage probability of task offloading in the MCC system with only remote cloud servers and that in the HMCC with both remote cloud servers and cloudlets. The analysis provides useful information, i.e., how the varying system parameters affect the outage probability. From the analysis, we show that there is an intrinsic limitation in reducing the outage probability in the MCC system due to the outage when accessing remote cloud servers. In addition, we show that the use of cloudlets is a promising solution to overcome this limitation. However, a tradeoff exists in using cloudlets due to their deployment and operation costs. Thus, to address this tradeoff, we also study the optimal cloudlet deployment to maximize the cloud service provider’s profit while guaranteeing maximum outage probability requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call