Abstract

Air-ground integrated vehicular edge computing (AGI-VEC) has emerged as an effective solution for task processing in vehicular networks. However, due to vehicle mobility, the network topology and available computing resources vary rapidly and are difficult to predict. In this paper, we develop a novel task offloading framework for AGI-VEC, which is called the learning-based Intent-aware Upper Confidence Bound (IUCB) algorithm. IUCB enables a UV to learn the long-term optimal task offloading strategy while satisfying the long-term ultra-reliable low-latency communication (URLLC) constraints in a best effort way under information uncertainty. Simulation results confirm that the proposed algorithm can approach the optimal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.