Abstract
Vehicular edge computing (VEC) is an innovative computing paradigm with an exceptional ability to improve the vehicles’ capacity to manage computation-intensive applications with both low latency and energy consumption. Vehicles require to make task offloading decisions in dynamic network conditions to obtain maximum computation efficiency. In this article, we analyze computation efficiency in a VEC scenario, where a vehicle offloads its tasks to maximize computation efficiency as a tradeoff between computation time and energy consumption. Although, it is quite a challenge to ensure the quality of experience of the vehicle due to diverse task requirements and the dynamic wireless conditions caused by vehicle mobility. To tackle this problem, a computation efficiency problem is formulated by jointly optimizing task offloading decision and computation resource allocation. We propose a mobility-aware computational efficiency-based task offloading and resource allocation (MACTER) scheme and develop a distributed MACTER algorithm that provides the near-optimal solution. We further consider the fifth-generation new-radio vehicle-to-everything communication model, i.e., cellular link and millimeter wave, to enhance the system performance. The simulation outcomes demonstrate that the proposed algorithm can efficiently enhance computation efficiency while satisfying computing time and energy consumption constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.