Abstract

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.