Abstract

A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access.

Highlights

  • Human readers are remarkably efficient at recognizing words: As noted in the introduction to this special issue, the time window in which a letter string passes from being a mere sequence of printed curves and strokes to being perceived as a word takes no longer than one-third of a second

  • In a semantic categorization task, subjects are asked to decide whether a word is an exemplar of a category (e.g., “animals”). In addition to these tasks, more recently, Norris and Kinoshita (2008) adapted the masked priming procedure to be used with the same-different task, which we describe below

  • From the perspective that different tasks should all tap into the output of a fixed lexical processing system, the diverse pattern of results found with different masked priming tasks makes little sense

Read more

Summary

Introduction

Human readers are remarkably efficient at recognizing words: As noted in the introduction to this special issue, the time window in which a letter string passes from being a mere sequence of printed curves and strokes to being perceived as a word takes no longer than one-third of a second. The main support for this view comes from the fact that in the lexical decision task word targets show robust masked priming effects but non-word targets do not.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call