Abstract

BackgroundSKF83959, an atypical dopamine (DA) D1 receptor agonist, has been used to test the functions of DA-related receptor complexes in vitro, but little is known about its impact on conditioned behavior. The present study examined the effects of SKF83959 on operant behaviors and assayed the neurochemical mechanisms involved.MethodsMale rats were trained and maintained on either a fixed-interval 30-second (FI30) schedule or a differential reinforcement of low-rate response 10-second (DRL10) schedule of reinforcement. After drug treatment tests, western blotting assayed the protein expressions of the calcium-/calmodulin-dependent protein kinase II (CaMKII) and the transcription factor cyclic AMP response element binding protein (CREB) in tissues collected from 4 selected DA-related areas.ResultsSKF83959 disrupted the performance of FI30 and DRL10 behaviors in a dose-dependent manner by reducing the total number of responses in varying magnitudes. Moreover, the distinct profiles of the behavior altered by the drug were manifested by analyzing qualitative and quantitative measures on both tasks. Western-blot results showed that phospho-CaMKII levels decreased in the nucleus accumbens and the dorsal striatum of the drug-treated FI30 and DRL10 subjects, respectively, compared with their vehicle controls. The phospho-CREB levels decreased in the nucleus accumbens and the hippocampus of drug-treated FI30 subjects but increased in the nucleus accumbens of drug-treated DRL10 subjects.ConclusionsOur results provide important insight into the neuropsychopharmacology of SKF83959, indicating that the drug-altered operant behavior is task dependent and related to regional-dependent changes of CaMKII-CREB signaling in the mesocorticolimbic DA systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call