Abstract

Task decoupling in robotic manipulators implies that there is a subset of joints primarily responsible for the completion of a subset of the manipulator task. In this paper, we take a novel and general view of task decoupling in which we identify link subsystems primarily responsible for completion of a subset of the manipulator task components, which is not necessarily position or orientation. Our analysis leads to the discovery of other decoupled manipulator geometries never identified before, wherein the decoupled system is responsible for a subset of degress-of-freedom involving a hybrid combination of both position and orientation. Closed-form inverse kinematic solutions for these manipulator geometries are therefore guaranteed. Task decoupling also implied singularity decoupling wherein singularities of decoupled subsystems are equivalent to the manipulator singularities. The analysis leads to a novel and efficient method for identifying the singularities and solving the inverse kinematics problem of six-axes manipulators with decoupled geometries. The practicality of the concepts introduced is demonstrated through an industrial robot example involving a hybrid position and orientation decoupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.