Abstract

The increasing number of computational cores in modern many-core processors, as represented by the Intel Xeon Phi architectures, has created the need for an open-source, high performance and scalable task-based dense linear algebra package that can efficiently use this type of many-core hardware. In this paper, we examined the design modifications necessary when porting PLASMA, a task-based dense linear algebra library, run effectively on two generations of Intel's Xeon Phi architecture, known as knights corner (KNC) and knights landing (KNL). First, we modified PLASMA's tiled Cholesky decomposition to use OpenMP tasks for its scheduling mechanism to enable Xeon Phi compatibility. We then compared the performance of our modified code to that of the original dynamic scheduler running on an Intel Xeon Sandy Bridge CPU. Finally, we looked at the performance of the OpenMP tiled Cholesky decomposition on knights corner and knights landing processors. We detail the optimisations required to obtain performance on these platforms and compare with the highly tuned Intel MKL math library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.