Abstract

Adaptive eating behaviors are dependent on an interaction between motivational states (e.g., hunger) and the ability to control one's own behavior (inhibitory control). Indeed, behavioral paradigms are emerging that seek to train inhibitory control to improve eating behavior. However, inhibitory control is a multifaceted concept, and it is not yet clear how different types (e.g., reactive motor inhibition, proactive motor inhibition, reward-related inhibition) are affected by hunger. Such knowledge will provide insight into the contexts in which behavioral training paradigms would be most effective. The present study explored the impact of promoting a “need” state (hunger) together with motivationally salient distracting stimuli (food/non-food images) on inhibitory control in 46 healthy adults. Participants attended two study sessions, once after eating breakfast as usual and once after acute food restriction on the morning of the session. In each session, participants completed questionnaires on hunger, mood and inhibitory control, and undertook task-based measures of inhibitory control, and had physiological measurements (height, weight, and blood glucose) obtained by a researcher. Acute food restriction influenced task-based assessments but not questionnaire measures of inhibitory control, suggesting that hunger affects observable behavioral control but not self-reported inhibitory control. After acute food restriction, participants showed greater temporal discounting (devaluation of future rewards), and subjective hunger and these were inversely correlated with stop accuracy on the stop signal task. Finally, participants generally responded faster when food-related distractor images were presented, compared to non-food images, independent of state. This suggests that although food stimuli motivate approach behavior, stimulus relevance does not impact inhibitory control in healthy individuals, nor interact with motivational state. These findings may provide some explanation for poorer inhibitory control often reported in studies of individuals who practice restraint over eating.

Highlights

  • IntroductionThe ability to adjust our behavior to adapt to our environment depends on the ability to stop/withhold inappropriate behaviors (broadly termed “inhibitory control”), as well as the ability to determine the salience and importance of environmental cues

  • Neuroimaging studies have revealed that brain activity in response to food stimuli differs according to hunger state, with satiety associated with a relatively reduced response in reward-related regions and an enhanced response in regions implicated in executive control in healthy individuals compared to a pre-meal state (Thomas et al, 2015), suggesting that the neural correlates of inhibitory control in the context of food is associated with hunger state

  • There was a trend for impulsivity assessed by the DELAYING GRATIFICATION INVENTORY (DGI) questionnaire (DGI Total: z = −1.717, p = 0.086) and motor impulsivity on the BIS11 (Motor subscale score: z = 1.795, p = 0.073) to be higher in the fasted state, this was no longer observed after correction for multiple comparisons

Read more

Summary

Introduction

The ability to adjust our behavior to adapt to our environment depends on the ability to stop/withhold inappropriate behaviors (broadly termed “inhibitory control”), as well as the ability to determine the salience and importance of environmental cues. This includes approaching items that fulfill a basic need or have rewarding properties (e.g., food), but only when this is contextually appropriate (i.e., when hungry compared to when satiated). Reward-related inhibition (i.e., waiting for a larger delayed reward rather than choosing immediate gratification) is required to overcome the temptation of, for example, a highly calorific snack and wait to eat a more substantial meal when hungry. Neuroimaging studies have revealed that brain activity in response to food stimuli differs according to hunger state, with satiety associated with a relatively reduced response in reward-related regions and an enhanced response in regions implicated in executive control in healthy individuals compared to a pre-meal state (Thomas et al, 2015), suggesting that the neural correlates of inhibitory control in the context of food is associated with hunger state

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.