Abstract

Laser beam steering has been widely studied for the automation of surgery. Currently, flexible instruments for laser surgery are operated entirely by surgeons, which keeps the automation of endoluminal surgery at the initial level. This paper introduces the design of a new workflow that enables the task autonomy of laser-assisted surgery in constrained environments such as the gastrointestinal (GI) tract with a flexible continuum robotic system. Unlike current, laser steering systems driven by piezoelectric require the use of high voltage and are risky. This paper describes a tendon-driven 2 mm diameter flexible manipulator integrated with an endoscope to steer the laser beam. By separating its motion from the total endoscopic system, the designed flexible manipulator can automatically manipulate the laser beam. After the surgical site is searched by the surgeon with a master/slave control, a population-based model-free control method is applied for the flexible manipulator to achieve accurate laser beam steering while overcoming the noise from the visual feedback and disturbances from environment during operation. Simulations and experiments are performed with the system and control methods to demonstrate the proposed framework in a simulated constrained environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.