Abstract

Task allocation is a critical issue in proper engineering of cooperative applications in embedded systems with latency and energy constraints, as in wireless sensor and actor networks (WSANs). Existing task allocation algorithms are mostly concerned with energy savings and ignore time constraints and thus increase the makespan of tasks in the network as well as the probability of malfunctioning of the network. In this paper we take both energy awareness and reduction of actor tasks’ times to completion in WSANs into account and propose a two-phase task allocation technique based on Queuing theory. In the first phase, tasks are equally assigned to actors just to measure the capability of each actor to perform the assigned tasks. Tasks are then allocated to actors according to their measured capabilities in such a way to reduce the total completion times of all tasks in the network. The results of simulations on typical scenarios shows 45% improvement in the makespan of tasks in a network compared to the wellknown opportunistic load balancing (OLB) task allocation algorithm that is generally used in distributed systems. It is shown that our algorithms provide better tradeoffs between load balancing and completion times of all tasks in a WSAN compared to OLB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call